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We study the classical problem of capacity and flexible technology selection with a newsvendor network
model of resource portfolio investment. The resources differ by their level of flexibility, where “level-k

flexibility” refers to the ability to process k different product types. We present an exact set-theoretic method-
ology to analyze newsvendor networks with multiple products and parallel resources. This simple approach is
sufficiently powerful to prove that (i) flexibility exhibits decreasing returns and (ii) the optimal portfolio will
invest in at most two, adjacent levels of flexibility in symmetric systems, and to characterize (iii) the optimal
flexibility configuration for asymmetric systems as well. The optimal flexibility configuration can serve as a
theoretical performance benchmark for other configurations suggested in the literature. For example, although
chaining is not optimal in our setting, the gap is small and the inclusion of scale economies quickly favors chain-
ing over pairing. We also demonstrate how this methodology can be applied to other settings such as product
substitution and queuing systems with parameter uncertainty.
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1. Introduction and Summary of
Results

When a firm produces several products, should dif-
ferent products share resources or should the firm
establish dedicated resources for some of them? The
polar extremes of total specialization and full resource
sharing or “pooling” are well studied, but inter-
mediate configurations with partial resource sharing
are often more appropriate. We study this classic
problem of capacity and flexible technology selec-
tion with a newsvendor network model, introduced
by Van Mieghem (1998) and Van Mieghem and Rudi
(2002) as the multidimensional generalization of the
familiar two-stage decision problem with recourse in
operations research. In stage 1, the firm invests in a
portfolio of different resources to produce N different
types of products knowing only their demand distri-
bution. In stage 2, product demands are observed and
allocated to the resources to maximize profits.
The resources differ by their technology or level of

flexibility, which we model as follows. Let “level-k

flexibility” refer to the ability to process k differ-
ent product types. There are

(
N
k

) = N !/��N − k�!k!�
different resources with level-k flexibility, including N
dedicated or specialized resources with k= 1 and one
fully flexible resource with k=N . The firm’s capacity
or flexibility portfolio (we will use both terms inter-
changeably) is denoted by the vector K of the capaci-
ties of the 2N − 1 different resources.
The products have unit shortage penalty costs

denoted by pi, i = 1	2	 
 
 
 	N . We first consider a
linear cost structure in capacity size and flexibil-
ity level: each unit of capacity of a level-k flexible
resource costs ck = c1�1 + �k − 1���	 where � ∈ �0	1�
denotes the flexibility premium. The firm’s objective
is to select the capacity portfolio K that maximizes its
expected profits. This is equivalent to determining the
minimal total cost, which is the sum of the expected
shortage and capacity costs.
We present an exact set theoretic methodology

and characterize the optimal flexibility configuration
for parallel newsvendor networks with N products.
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Following Van Mieghem (1998), our methodology
expresses the marginal value of capacity in terms of
demand shortage regions. The analysis in that paper,
as in most follow-up work, relies on explicit descrip-
tions of the shortage regions and focuses on only two
dimensions. The novelty in our approach is that we
express the marginal value of level-k resources using a
set theoretic approach that does not require an explicit
description of these regions. This abstract yet sim-
ple approach extends to N dimensions. This simple
approach is sufficiently powerful to prove that (i) flex-
ibility exhibits decreasing returns and (ii) the optimal
portfolio will invest in at most two, adjacent levels of
flexibility in symmetric systems, and to characterize
(iii) the optimal flexibility configuration for asymmet-
ric systems as well.
The precise statements of these results are pro-

vided in later sections of this paper; here we illustrate
them for a parallel newsvendor network with N = 4
products. A capacity portfolio then can consist of four
dedicated resources, six level-2 resources, four level-3
resources, and one fully flexible resource. For exposi-
tional simplicity, let us assume here that the demand
distribution and unit shortage penalties are product-
type independent, or symmetric. The optimal capac-
ity portfolio is then shown to be also product-type
independent, and all level-k flexible resources have
the same capacity K

k . The 15-variable problem thus
reduces to one with four variables that we determine
as follows.
First, let �i denote the set of demand realizations

where there is a shortage of dedicated resource i
for a given capacity portfolio K. Then, the expected
marginal value of investing additional capacity in
dedicated resource i (beyond that in portfolio K)
equals the per-unit shortage cost p times the prob-
ability that the realized demand lies in the set �i,
i.e., p���i�. Now consider a level-2 flexible resource
that can process products i and j . Then, one extra
unit of its capacity can be used to decrease the con-
tingent shortage of product i or j . With a common
shortage cost, the marginal value of such a resource
is p���i ∪�j�. Furthermore, in a symmetric system
we have that ���i ∪ �j� = ���1 ∪ �2�. In general,
the marginal value of a level-k flexible resource in
a symmetric system equals p��

⋃k
i=1�i�. Clearly, as

expected, the marginal value increases in the level of
flexibility. More importantly, this increase is strictly
concave so that there are decreasing returns to flexibility
in newsvendor networks. Indeed, simple set algebra
shows that

p���1 ∪�2 ∪�3 ∪�4�− p���1 ∪�2 ∪�3�

< p���1 ∪�2 ∪�3�− p���1 ∪�2�

< p���1 ∪�2�− p���i�


The optimality conditions require that the marginal
value of any positive investment in a level-k resource
must equal its marginal cost. Given that the marginal
value is strictly concave in the level of flexibility while
the marginal cost is linear, this provides a restriction
on potential optimal portfolios. Specifically, for this
symmetric system, we obtain that the optimal capacity
portfolio invests in at most two adjacent levels of flex-
ibility. Imagine a graph where product types are rep-
resented by rectangles and resources by circles. An arc
from a rectangle to a circle then represents a possi-
ble product–resource assignment; the number of arcs
into a circle equals that resource’s level of flexibility.
Our main result can then be graphically illustrated
as in Figure 1. (We use the convention that the num-
bers in rectangles denote product types, and those in
circles represent the products that can be produced
by the corresponding resources.) There can only be
three optimal flexibility configurations in symmetric
newsvendor systems with N = 4 products: invest only
in resources with flexibility levels (a) one and two,
(b) two and three, or (c) three and four. The configu-
ration that invests in levels one and two is referred to
as “tailored pairing.” In this configuration, each prod-
uct can be produced by a pair of level-2 resources, and
such configurations are referred to as “pairing” in Bas-
samboo et al. (2010a). The adjective “tailored” refers
here to using mostly dedicated resources to serve the
average demand and a small amount of only level-2
flexibility to serve variability.
Figure 1 further demonstrates the fact that it will

be optimal to invest in higher levels of flexibility only
for lower flexibility premiums. We also prove that,
as expected, the value of flexibility decreases as any
pairwise demand correlation increases.
We investigate the key drivers of the optimal flex-

ibility configurations using numerical studies. When
the cost of flexibility � rises, the investment in higher
levels of flexibility is substituted for lower levels.
Interestingly, the associated capacity levels are non-
monotone. For example, as � rises, the investment in
level-4 flexibility falls while the level-3 investment ini-
tially rises. When level-4 capacity reaches zero, level-3
capacity peaks and then falls (and level-2 flexibility
rises as a substitute), as further discussed in §4.
Our main results characterize the optimal flexibility

configuration, which can serve as a theoretical perfor-
mance benchmark for other configurations suggested
in the literature. In particular, the seminal paper by
Jordan and Graves (1995) showed that “a little flexi-
bility can achieve almost all the benefits of total flex-
ibility” by using only level-2 flexible resources in a
special configuration called chaining. Chaining repre-
sents any flexibility configuration of N level-2 flexible
resources that are connected, directly or indirectly,
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Figure 1 A Graphical Representation of the Optimality Conditions and Portfolios for an N = 4 Product Setting
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Notes. The optimal configuration invests in flexibility to match the marginal value with the marginal cost. Depending on the cost parameters, only one of three
configurations can be optimal: the optimal portfolio invests only in resources with flexibility levels (a) one and two (“tailored pairing”), (b) two and three, or
(c) three and four.

to all N product types by product–resource assign-
ments. Chaining allows for shifting capacity from
products with lower than expected demand to those
with higher than expected demand. Using simulation
and providing some analytical justification for the
same newsvendor network model as we study, Jordan
and Graves (1995) demonstrated that the expected
shortfall and capacity utilization of chained level-2
flexible resources is close to the expected shortfall and
utilization of fully flexible resources with the same
capacity. In other words, a little flexibility goes a long
way. Graves and Tomlin (2003) showed that similar
chaining benefits extend to multistage systems.
We prove analytically that flexibility exhibits

decreasing returns in newsvendor networks. This pro-
vides the general, mathematical confirmation that
“a little flexibility goes a long way” and corrobo-
rates the virtues of chaining. At the same time, we
also prove that chaining is not optimal in symmetric
newsvendor systems with a linear cost structure and
more than three products. Indeed, if the optimal con-
figuration in such systems invests in level-2 flexibility,
it must invest equally in all N�N −1�/2 level-2 flexible
resources. That is, each product can then be produced

by a pair of level-2 resources in this pairing configura-
tion. In contrast, chaining uses only N level-2 flexible
resources, or N�N − 3�/2 less than pairing, and hence
is suboptimal for symmetric newsvendor networks.
Figure 2 demonstrates the three chaining configura-
tions possible for N = 4, and the pairing configuration
that invests in all N�N −1�/2= 6 resources. Recall that
the adjective “tailoring” refers to using mostly ded-
icated resources to serve the average demand and a
small amount of only level-2 flexibility to serve vari-
ability. (Note that with three products, chaining and
pairing are identical.)
In practice, capacity investment often enjoys scale

economies that induce a firm to invest in fewer but
bigger resources. Although general scale economies
pose mathematical challenges, we are able to extend
our main analytic result to a setting where a posi-
tive capacity investment incurs a fixed cost. Clearly,
with setup costs, the optimal capacity portfolio need
no longer be symmetric (not even in a symmetric sys-
tem). The contribution of this result is to significantly
reduce computational time in finding the optimal
strategy. As expected, our numerical study confirms
that scale economies diminish the practical value of
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Figure 2 With N = 4 Product Types There Exists Only One Tailored Pairing Configuration But Three Tailored Chaining Configurations
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pairing and favor chaining, and increasingly so when
the number of products rises. We also extend our
results to a setting where capacity costs are concave
in the level of flexibility. The optimal levels of flex-
ibility increase with increasing concavity or “scope
economies.”
Our work continues the line of literature on flex-

ible technology, started by Fine and Freund (1990)
and followed by Gupta et al. (1992), Jordan and
Graves (1995), and Van Mieghem (1998), among oth-
ers. Bish and Wang (2004) and Chod and Rudi (2005)
added pricing to the flexibility problem. Newsven-
dor network models have also been used to study
sourcing or input flexibility (e.g., Tomlin and Wang
2005, Tomlin 2006), transshipment (e.g., Dong and
Rudi 2004 and references therein), and part substitu-
tion and commonality (e.g., Gerchak and Henig 1989,
Van Mieghem 2004). Goyal and Netessine (2007) stud-
ied flexibility strategies in competitive newsvendor
networks. We briefly consider the case of product sub-
stitution by the firm (e.g., Bassok et al. 1999, Netessine
et al. 2002). We show how the insights and methodol-
ogy derived in this paper can be extended to include
cases where the firm can satisfy demand by substitut-
ing products.
We also relate our findings to recent studies of flex-

ibility in queuing systems, e.g., Sheikhzadeh et al.
(1998), Gurumurthi and Benjaafar (2004), Iravani et al.
(2005), Wallace and Whitt (2005), and Gurvich and

Whitt (2010). In a recent work, Bassamboo et al.
(2010a) proved that “a little flexibility is all you need”
in symmetric queuing systems. To be precise, they
show that tailored pairing is asymptotically optimal
in queuing systems with large arrival rates. Queuing
systems with independent arrival and service times
enjoy statistical pooling that ultimately make vari-
ability a second-order effect compared to the mean
demand. The resulting asymptotic optimality of tai-
lored pairing agrees with our optimality results here.
Indeed, we show that if the optimal capacity portfolio
invests in dedicated resources, tailored pairing is also
optimal in newsvendor networks. Yet variability can
be a first-order effect in newsvendor networks, and
we show that the optimal flexibility configurations
exhibit more richness and can “go beyond” tailored
pairing and invest in higher levels of flexibility.
Realizing that traditional asymptotic queuing anal-

ysis relegates uncertainty to a second-order effect,
recent studies have investigated queuing systems
with arrival rate uncertainty, e.g., Harrison and Zeevi
(2005), Whitt (2006), and Bassamboo et al. (2006). In
such queuing systems, capacity decisions reduce to
a newsvendor network problem of the type studied
here. This shows that our results also apply to flexi-
bility configurations in queuing systems.
The remainder of this paper starts with a model

description. Section 3 illustrates our approach for
symmetric systems and characterizes the optimal
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flexibility configuration. The key drivers of that con-
figuration are investigated with a numerical study in
§4. Section 5 extends our analytic results to newsven-
dor networks with (a) asymmetric demand distribu-
tions, (b) scale economies, and (c) scope economies.
We discuss the case of product substitution and the
connection of our results to queuing systems in §6 and
present concluding remarks in §7. For pedagogical rea-
sons, the proofs of results in §4 are provided in the
main text, whereas those of results in §§5 and 6 (which
have the same underlying principles as those in §4)
and supporting results are relegated to the appendices.

2. A Newsvendor Network
Model of Flexibility

We consider a multidimensional two-stage decision
problem with recourse. In stage 1, the firm invests in a
portfolio of different resources to produce N different
types of products knowing only their demand distri-
bution. In stage 2, product demands are observed and
allocated to the resources to maximize profits.
The resources have different levels of flexibility,

which we model as follows. Let “level-k flexibility”
refer to the ability to process k ∈ �1	2	 
 
 
 	N � dif-
ferent product types. To specify which k product
types a given resource can produce, we refer to that
resource by the set of product types F ⊆ �1	2	 
 
 
 	N �
it can produce. The cardinality of F thus equals the
resource’s level of flexibility. We assume that each unit
of production consumes one unit of capacity, irrespec-
tive of the resource and product, and we denote the
maximal number of units that resource F can produce
by its capacity KF . There are

(
N
k

)=N !/��N − k�!k!� dif-
ferent resources with level-k flexibility, including N
dedicated or specialized resources with k= 1 and one
fully flexible resource with k=N . The firm’s capacity
or flexibility portfolio (we will use both terms inter-
changeably) is denoted by the vector K �= �KF � F ⊆
�1	 
 
 
 	N �� and can comprise up to

∑N
k=1

(
N
k

)= 2N − 1
different resources.
We denote the demand for product i by the ran-

dom variable Di. The product vector D has a general
distribution with probability measure � , and ƐD will
denote the associated expectation operator. For ana-
lytic simplicity, we will assume that the probability
density function exists and is positive over �N

+ .
The products have unit shortage penalty costs

denoted by pi > 0. We first consider a linear cost struc-
ture in capacity size and flexibility level: each unit
of capacity of a level-k flexible resource costs ck =
c1�1+ �k− 1���	 where � ∈ �0	1� denotes the flexibil-
ity premium. Clearly, a fully flexible resource would
dominate all resources with lower levels of flexibility
if �= 0. Similarly, k dedicated resources would dom-
inate one level-k flexible resource if �≥ 1.

The firm’s objective is to select the capacity portfo-
lio K that maximizes its expected profits. This profit
maximization problem is equivalent to determining
the minimal total cost �, which is the sum of the
expected shortage and capacity costs, as follows:

� =min
K

{
ƐD��K	D�+

∑
F⊆�1	 


 	N �

c�F �KF

}
	 (1)

where ��K	D� is the optimal contingent operating
profit:

��K	D�=min
x≥0

N∑
i=1
pi

(
Di −

∑
�F � i∈F �

xi	 F

)
	 (2)

∑
�F � i∈F �

xi	 F ≤Di for all i= 1	 
 
 
 	N	 (3)

∑
i∈F
xi	 F ≤KF for all F ⊂ �1	 
 
 
 	N �
 (4)

In the second-stage problem (2)–(4), the firm must
allocate the chosen capacity portfolio K to the
observed demand vector D to minimize shortage
costs. In this allocation problem, xi	 F denotes the
amount of product i produced by resource F . Thus,∑

�F � i∈F � xi	 F denotes the total production of product i
and Di−

∑
�F � i∈F � xi	 F represents its shortage. Summing

the shortages of all products yields the total short-
fall. This optimization is subject to the usual demand
and capacity constraints. The demand constraints (3)
ensure that supply (production) does not exceed the
demand for any product; the capacity constraints (4)
reflect that supply cannot exceed capacity.
Linear programming theory shows that the optimal

contingent operating profit ��K	D� is jointly convex
in K and D. Furthermore, it also is supermodular in
D as we show in Appendix A (cf. Corollary 3). As a
linear continuous superposition, the expected operat-
ing profit ƐD��K	D� is strictly convex in the capacity
portfolio K. Hence, the optimal portfolio K is unique
and solves the necessary and sufficient first-order or
Karush–Kuhn–Tucker (KKT) conditions:

K · �c−�KƐD��K
	D��= 0	 (5)

c ≥ �KƐD��K
	D�
 (6)

Differentiation and expectation can be interchanged
and the optimality conditions simplify to

�KƐD��K	D�= ƐD�K��K	D�=
∑
j

�̃j���̃j �K��	 (7)

where ��̃j � represents a partition of the demand space
such that

⋃
j �̃j =�N

+ and �̃j are the constant Lagrange
multipliers of the capacity constraints for D ∈ �̃j .
Equation (7) can be made rigorous by using argu-
ments similar to those of Harrison and Van Mieghem
(1999, Proposition 2).
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Intuitively, the (polyhedral) demand sets �̃j corre-
spond to a set of demand samples for which some
resources are capacity constrained. We will refer to
these sets as shortage regions and to the corresponding
resources as conditional bottlenecks. Their associated
component in the Lagrange vector �̃j , that corresponds
to the optimal dual vector, is the conditional marginal
value of their capacity. In general, the Lagrange vec-
tors and the domains depend on the capacity portfo-
lio K and on the relative profitability of products. We
observe that any positive component of �j must equal
the shortage penalty of some product pi. Indeed, an
� > 0 increase in the capacity of a conditional bottle-
neck resource can be used to reduce the shortage of
some product i by pi� (see Lemma 1 in Appendix A
for a formal proof).
In this paper, we use set theory to express the

marginal value of a flexible resource in terms of
the shortage regions of the dedicated resources. This
allows us to characterize the value of flexible resources
and develop insights into optimal flexibility portfolios.
To illustrate the mode of analysis, we begin by

analyzing a symmetric system, where the shortage
penalty is the same for all products and denoted by p,
and the demand distribution G�x�= ��D < x� is sym-
metric in its components, meaning that G�x1	 
 
 
 	 xi	

 
 
 	 xj	 
 
 
 	 xN � = G�x1	 
 
 
 	 xj	 
 
 
 	 xi	 
 
 
 	 xN � for any
1 ≤ i < j ≤ N . Henceforth, we shall simply call such
distributions “symmetric,” and we shall generalize to
asymmetric demand distributions in §5.1.
The symmetry assumption allows further sim-

plifications. First, any positive components in any
Lagrange multiplier vector �̃j equal the common
shortage penalty p. Furthermore, we will be able to
specify the optimality equations in terms of N short-
age regions �i, where �i is the shortage region of
dedicated resource i. (Formally, it is the set of demand
realizations where the dual variable corresponding to
resource �i� equals p. See Definition 1 in Appendix A
for further details.) We will see that these shortage
regions �i typically are not disjoint, and hence differ
from the regions �̃j in (7).

3. Optimal Flexibility Portfolios for
Symmetric Systems

System symmetry together with the uniqueness of the
optimal portfolio K implies that the optimal portfo-
lio must also be symmetric and product-type inde-
pendent. This greatly simplifies the analysis because
we can restrict attention to portfolios of the form
�K1	K2	 
 
 
 	KN �, where Kk is the capacity of each of the(
N
k

)
different resources with level-k flexibility. Thus,

instead of having 2N − 1 variables, the optimal solu-
tion is characterized by only N variables.

3.1. Shortage Regions and Marginal Value of
Dedicated Resources

Let �i�K� denote the shortage region for product i
under the capacity portfolio K. The marginal value of
investing in dedicated resource i then is p���i�. To
better understand the shortage regions, we will illus-
trate them for the one- and two-product cases.
The single-product case (N = 1) is the standard

newsvendor problem and the capacity portfolio con-
sists of only a dedicated resource with capacity K�1�.
The resource is a contingent bottleneck when D1 >K�1�

so that its shortage region is �1�K� = �D1 > K�1��,
and the expected marginal value of capacity is
p���1�K��= p��D1 >K�1��.
For the two-product setting (N = 2), for a given

capacity vector K, Figure 3 depicts four mutually
exclusive scenarios. Denoted by �̃0 is the scenario
where capacity exceeds demand and no product expe-
riences a shortage. The contingent marginal value
of all three capacities is zero. In contrast, when
demand falls in �̃1, there is a shortage of product 1,
but abundant capacity to meet product 2 demand.
Resources �1� and �1	2� are contingent bottlenecks
with marginal value p: an increase in the capacity
of either resource will decrease the product 1 short-
fall when demand falls in �̃1, but an increase in
resource �2� capacity would be valueless. The scenario
�̃2 is the analog of scenario �̃1, where product 2 expe-
riences a shortage but not product 1. Finally, both
products experience a shortage in region �̃3 in the
sense that an increase in any capacity decreases the
total shortfall.
We can combine the above scenarios to obtain the

shortage regions as follows: the shortage region of re-
source �1� is �1�K�= �̃1 ∪ �̃3, and the marginal value
of dedicated resource 1 equals p���1�. Similarly, we

Figure 3 The Demand Space for a Two-Product Setting

~
Ω1

Shortage of product 1

~
Ω2

Shortage of product 2

~
Ω3

Shortage of both products

~
Ω0

K{1}

K{2}

K{1} + K{1,2}

K{2} + K{1,2}

D1

D2

Sufficient capacity: All demand
is satisfied

Notes. With two products, the demand space is partitioned into four regions:
All demand can be satisfied in �̃0. There is a shortage of only product 1 in �̃1

and of only product 2 in �̃2; both products may experience shortages in �̃3
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have �2�K�= �̃2 ∪ �̃3, and the marginal value of ded-
icated resource 2 equals p���2�.

3.2. Characterizing the Optimal Portfolio
We use the shortage regions of the dedicated resources
to characterize the optimal portfolio. There are two
important steps in our approach.
First, we express the marginal value of investing in

a level-k > 1 flexible resource in terms of the shortage
regions �i�K�, as follows. By definition, a marginal
unit of a level-2 flexible resource that can produce
products �i	 j� is equivalent to a marginal unit of dedi-
cated resource i or j , where the choice of product i or j
typically depends on the realized demand. Regard-
less of the product produced, the marginal value of
level-2 capacity is p���i ∪�j�. Given the symmetry,
p���i ∪ �j� = p���1 ∪ �2�. Similarly, the marginal
value of any level-k flexible resource is p��

⋃k
i=1�i�

(cf. Lemma 3 in Appendix A) and the optimality
Equations (5) and (6) simplify:

Proposition 1. In a symmetric system, the optimal
flexibility configuration K ≥ 0 solves

K
k

(
ck− p�

( k⋃
i=1
�i�K

�

))
= 0 for 1≤ k≤N	 (8)

p�

( k⋃
i=1
�i�K

�

)
≤ ck for 1≤ k≤N
 (9)

Second, we use formal set algebra to establish that
the marginal value of level-k flexible capacity is con-
cave increasing in k. For example, consider a three-
product system. Clearly,

���1�≤ ���1 ∪�2�≤ ���1 ∪�2 ∪�3�	

so that the marginal value of a dedicated resource is
less than that of a level-2 flexible resource, which at its
turn is less than the marginal value of a fully flexible
resource. In addition, the corresponding increments
are decreasing:

0 ≤ ���1∪�2∪�3�−���1∪�2�

≤ ���1∪�2�−���1�	 (10)

so that the marginal value of capacity is concave
increasing in the level of flexibility k. This result that
flexibility exhibits “decreasing returns” generalizes to
symmetric newsvendor networks:

Proposition 2 (Decreasing Returns to Flexibil-
ity). In a symmetric system, for any capacity vector K,
the marginal value of capacity is concave increasing in the
level of flexibility k; that is, we have

�

( k⋃
i=1
�i�K�

)
≤ �

(k+1⋃
i=1
�i�K�

)
for 1≤ k <N	 (11)

and

�

(k+2⋃
i=1
�i�K�

)
−�

(k+1⋃
i=1
�i�K�

)

≤�

(k+1⋃
i=1
�i�K�

)
−�

( k⋃
i=1
�i�K�

)

for 1≤k<N−1	 (12)

where the inequality is strict if Kk > 0.

Proof. Equation (11) is self-evident. For the second
relationship, basic set theory yields that

�

(k+2⋃
i=1
�i

)
= ���k+2�+�

(k+1⋃
i=1
�i

)

−�

(
�k+2 ∩

(k+1⋃
i=1
�i

))
	 (13)

�

(k+1⋃
i=1
�i

)
= ���k+1�+�

( k⋃
i=1
�i

)

−�

(
�k+1 ∩

( k⋃
i=1
�i

))

 (14)

Given system symmetry, ���k+2� = ���k+1� and
���k+1 ∩ �

⋃k
i=1�i�� = ���k+2 ∩ �

⋃k
i=1�i��. The obser-

vation that ���k+2 ∩ �
⋃k

i=1�i�� ≤ ���k+2 ∩ �
⋃k+1

i=1 �i��
yields (12). Notice that for any i	 j , �i ∩ �j cannot
be a null set for any finite capacity portfolio because
there will be some high demands exceeding the over-
all capacity. A similar argument yields that if Kk > 0,
then there exists a set of demand realizations with
positive probability A such that A ⊆�k+2 ∩�k+1 but
A ∩ ��k+2 ∩ �i� is empty for all i ≤ k, which yields
���k+2 ∩ �

⋃k
i=1�i�� < ���k+2 ∩ �

⋃k+1
i=1 �i�� (the argu-

ment is analogous to that in the proof of the more
general Proposition 5 and is omitted). �

The optimal investment problem can be graphically
represented as in Figure 1. The marginal value of
capacity is concave and increasing in the level of flex-
ibility k, and strictly concave when Kk′ > 0 for some
1≤ k′ <N − 1, whereas the marginal cost of capacity
is linearly increasing in k. Thus, both can be equal for
at most two levels of flexibility, which then must be
adjacent. This yields our main result:

Proposition 3. In a symmetric system, the optimal
flexibility portfolio invests in at most two levels of flexi-
bility. These two levels are always adjacent. Furthermore,
it is never optimal to invest in the fully flexible resource
alone: There exists a k ∈ �2	 
 
 
 	N � such that

K = �0	 
 
 
 	0	K
k−1	K


k	0	 
 
 
 	0�


If K
N > 0, then we must also have K

N−1 > 0.
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Proof. Suppose K
k′ > 0 for some 1≤ k′ <N . Then,

flexibility has strictly decreasing returns (cf. Proposi-
tion 2). Combining this with the linear cost of flexi-
bility, the result follows immediately. Now, consider
the case Kk′ = 0 for all 1 ≤ k′ < N . Then, all short-
age regions are equal: for any dedicated resource i,
its shortage region is �i = �

∑N
j=1Dj > KN �, and the

marginal value of any level-k resource is indepen-
dent of k. However, as the cost of capacity is strictly
increasing in the amount of flexibility, this portfolio
cannot satisfy the KKT conditions, and hence cannot
be optimal. �

The above proposition proves that the optimal
flexibility portfolio invests in at most two, adjacent
levels of flexibility. This implies that there are only
N − 1 optimal flexibility configurations in a symmetric
newsvendor network with N products. It is possible
that an optimal configuration invests in no resources,
or in only one level of flexibility, but this cannot be the
fully flexible resource. For example, consider a four-
product setting where the capacity portfolio can con-
sist of four dedicated resources, six level-2 resources,
four level-3 resources, and one fully flexible resource.
Proposition 3 implies that there are only three opti-
mal flexibility configurations that invest in flexibility
levels 1 and 2 (that is, tailored pairing as shown in
panel (a) in Figure 1), levels 2 and 3 (panel (b)), or
levels 3 and 4 (panel (c)).
If it is optimal to invest in dedicated resources, we

immediately obtain the optimality of tailored pairing.

Corollary 1 (Optimality of Tailored Pairing).
If the optimal flexibility portfolio for a symmetric system
invests in dedicated resources, then there will be no invest-
ment in level-k > 2 flexible resources.

Given that for N = 3, pairing is equivalent to chain-
ing, we establish that tailored chaining then is optimal
for three product systems. Recall that, as discussed
in the introduction, for N > 3 tailored chaining is
an asymmetric configuration, and therefore subopti-
mal in our setting. With economies of scale, however,
chaining quickly becomes more attractive than pair-
ing, as we shall discuss in §5.2.
Although we have characterized the structure of

the optimal flexibility configuration, determining the
actual capacity levels typically is done numerically.
Given that the optimal solution invests at most in
two consecutive levels of flexibility, one computa-
tional strategy to solve the problem is to restrict the
optimization over two adjacent levels of flexibility;
that is, we optimize (1) over capacity portfolios of the
form �0	 
 
 
 	0	Kk−1	Kk	0	 
 
 
 	0�, where 1 < k ≤ N .
Note that there are N −1 such restrictions. If we find a
solution to one of these restrictions with K

k−1	K

k > 0,

the fact that the marginal value of an increase in flex-
ibility is decreasing, along with the fact that the KKT

conditions uniquely characterize the optimal solu-
tion, immediately implies that it cannot be optimal to
invest in flexibility levels other than k − 1 and k in
the unrestricted problem; that is, the optimal capacity
portfolio is in fact �0	 
 
 
 	0	K

k−1	K

k	0	 
 
 
 	0�.

Next we will investigate the key drivers of the
optimal flexibility configuration. It will be useful to
quantify the value of flexibility as follows. Let �d

denote the optimal total cost when only dedicated
resources can be used. Thus, �d is the cost of a zero-
flexibility strategy. The value of flexibility then is the
relative decrease in cost when using the optimal flex-
ibility strategy:

value of flexibility V  = �d −�

�d




We expect that the system performance will dete-
riorate as demand is more variable or more corre-
lated. Indeed, given that ��K	D� is supermodular
in D (cf. Corollary 3 in Appendix A), Proposition 3 in
Van Mieghem and Rudi (2002) yields the following:

Proposition 4. Let D be normally distributed with
any mean vector ! and covariance matrix ". The optimal
costs � and �d are increasing in any (co)variance term.
Given that �d is independent of correlation, the value of
flexibility is decreasing in any pairwise demand correlation.

We will illustrate this general property with a
numerical study in the next section.

4. Key Drivers of the Optimal
Flexibility Configuration

In this section, we study how the structure of the opti-
mal capacity portfolio depends on model parameters
via a numerical study for N = 4 products. In our first
study, the demand for each product is uniformly dis-
tributed on the interval #0	2$ and is independent of the
demand for other products. In addition to unit mean
demand, we normalize the shortage cost to p= 1 and
fix the marginal cost of level-1 resources at c1 = 0
9.
As a benchmark, it is useful to consider the optimal
no-flexibility strategy, which would invest in four spe-
cialized resources, each having a 90% shortage prob-
ability. Thus, each optimal dedicated capacity is 0.2
with a capacity cost of 0
2×0
9= 0
18 and an expected
shortage cost of 90%× �0
9 units short on average�×
1= 0
81. Summing the total capacity cost of 0.72 and
the total shortage cost of 3.24 yields a total cost of 3
96
for the optimal zero-flexibility strategy, which must be
an upper bound for the flexible configurations.

4.1. The Substitution Impact of the Flexibility
Cost Premium �

As the marginal cost of flexibility increases, we expect
to invest less in higher levels of flexibility and the
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Figure 4 Optimal Configurations, Cost, and Capacities vs. the Flexibility Premium for Demand Uniformly Distributed on �0�2�

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 0.02 0.04 0.06 0.08 0.10 0.12

3.75

3.80

3.85

3.90

3.95

4.00

1,2,4

2,3,4

1,2,3

1,3,4

1

4

2

3

1

2

3

4

1

4

2

3

1,2

1,3

2,3

2,4

3,4

1,4

1

4

2

3

1,2

1,3

2,3

2,4

3,4

1,4

1

2

3

4

1

4

2

3
1,2,4

2,3,4

1,2,3

1,3,4

O
pt

im
al

 c
os

t

Relative cost of flexibility �

O
pt

im
al

 c
ap

ac
ity

Dedicated capacity

Level-2 capacity

Level-3 capacity

Fully flexible capacity

1,2,3,4

total cost to rise. This is confirmed by Figure 4, which
shows the optimal configuration and cost as a func-
tion of the flexibility premium �. The lower panel
shows the optimal level of investment in each level of
flexibility as a function of the flexibility premium.
When flexibility is almost costless (� near 0), the

optimal portfolio invests mainly in full flexibility and
a small level of level-3 resources as expected. As the
premium increases, the optimal portfolio “rebalances”
its investment by reducing the fully flexible capac-
ity and increasing the level-3 capacity. At a premium
around 0
003, the optimal investment in the fully flex-
ible resource is zero, and the flexibility configura-
tion changes toward levels 2 and 3. As the premium

increases, the portfolio again rebalances by substitut-
ing the higher level flexible capacity for lower level
flexible capacity until the next flexibility cost thresh-
old of �= 0
032 is reached and the optimal configura-
tion changes again to a lower level of flexibility. This
substitution repeats itself until �= 0
1, beyond which
point a no-flexibility configuration is optimal.
A similar substitution pattern was proved in

Van Mieghem (1998, Proposition 3) for a two-product
system where the substitution toward the dedicated
capacity was monotone. With more products, the
capacity levels are not monotone in the flexibility
cost premium, but the substitution is always from a
higher level of flexibility to a lower level. Indeed, the
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Figure 5 Decomposition of Total Optimal Cost Into the Capacity and
Shortage Costs
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Note. As flexibility becomes more expensive, total cost and shortage cost
rise while capacity cost falls.

capacity investments in level-2 and level-3 resources
rise and then fall as the flexibility cost premium �
increases. Furthermore, the investment in flexibility
level-k peaks exactly when the investment in level-
�k+ 1� first reaches zero.
Figure 5 shows the decomposition of the total opti-

mal cost into capacity and shortage costs. As the flexi-
bility premium increases, there is lower investment in
flexible capacity and the shortage cost of lost demand
increases. It is worth noting that the change in the cost
components over the range of the premium is about
50%–100%, as opposed to the total cost, which only
varies about 5% for the chosen parameter values.

4.2. The Normal vs. the Uniform Distribution
Given that the newsvendor optimality conditions in-
volve the entire demand distribution, we expect the
functional form of the demand distribution to affect
the optimal flexibility configuration. This is indeed
observed when we repeat our first study but only
replace the uniform demand distribution with a nor-
mal demand distribution with the same mean of 1 and
standard deviation % = 0
58. (We truncate the normal
distribution to eliminate negative demand values.)
Figure 6(a) shows the optimal cost as a function of
the flexibility premium. Investing in flexibility lev-
els 1 and 2 (i.e., tailored pairing) is optimal for � ∈
#0
01	0
1$, which is larger than the region #0
032	0
1$
for the uniform distribution (see Figure 4). Further-
more, the region where it is optimal to invest in lev-
els 3 and 4 is now too small to discern.
Summarizing, even when the first two moments are

matched, the normal distribution seems to favor the
lower levels of flexibility of the tailored pairing con-
figuration compared to the uniform distribution. This
effect is even magnified when we lower the demand

Figure 6 Changing the Demand Distribution from Uniform to Normal
and Keeping Identical Cost c1 and Demand Mean and
Standard Deviation � Leads to Optimality of Lower Levels
of Flexibility (a); Tailored Pairing Is Always Optimal When
the Variability Decreases (b), or When the Cost of
Dedicated Resources Decreases (c)
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(c) c1 = 0.25 and � = 0.58
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variability or the cost of dedicated capacity, as shown
in Figure 6, panels (a) and (b). Panel (b) lowers the
demand standard deviation from 0
58 to 0
3. Tailored
pairing is now optimal for all discernible value of
the flexibility premium. Panel (c) lowers the cost of
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dedicated capacity from c1 = 0
9 to 0.25, which leads
to a similar observation. These observations suggest
that tailored pairing is a desirable flexibility configura-
tion for most reasonable cases of cost parameters and
demand variability. Higher levels of flexibility will be
valuable only with high demand variability or a high
relative cost of dedicated capacity (compared to the
penalty cost).

4.3. The Impact of Demand Variability and
Correlation on the Value of Flexibility

Figure 7(a) shows the value of flexibility for our first
study with normal demand. The plot shows the value
as a function of the cost of flexibility and as a func-
tion of the coefficient of variation of the demand dis-
tribution (which equals the standard deviation given
that the mean is 1). Tailored pairing was the optimal
flexibility configuration for all investigated parameter
values. As expected, the value of flexibility increases
as the demand variability increases. Note that this
does not follow from Proposition 4 because both �

Figure 7 The Value of Flexibility Increases When the Demand
Variability Increases But Decreases When the Correlation
Between the Different Product Demands Increases
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and �d are affected by variance. The numerical find-
ing implies that, as expected, � is less affected by
the variance because of the pooling benefits of flexi-
bility. Even with a relatively low coefficient of varia-
tion of 0
15, the maximal value of flexibility is about
6%. This figure increases to 20% when the coefficient
of variation increases to 0
58. As expected, the value
of flexibility decreases in the relative cost of flexibil-
ity �. Notice that the threshold flexibility premium
beyond which there is no investment in flexibility is
also increasing in variability.
Next, we study the impact of correlation. We do so

by varying the pairwise correlation coefficient & over
the interval #−1/3	1$.1 Figure 7(b) verifies that the
value of flexibility decreases as the correlation coeffi-
cient & increases, as proved in Proposition 4.

5. Extensions: Asymmetric Products,
Economies of Scale, and Scope

5.1. Asymmetric Products
In this section, we consider products with poten-
tially different demand distributions and financial
parameters, and prove that our main results (Proposi-
tion 3 and Corollary 1) continue to hold in a slightly
generalized manner. Obviously, the optimal capacity
portfolio K will no longer be symmetric and we will
specify it as described in §2. In particular, the portfo-
lio K now consists of the capacity of resource F for all
F ⊆ �1	2 
 
 
 	N �, where F denotes the set of products
that can be processed by resource F . Note that now
different resources with the same level of flexibility
can have different capacities depending on the prod-
ucts they can process. This asymmetry in the solution
increases the number of candidate flexibility configu-
rations (measured as the number of product–resource
allocation graphs) from 2N to 22N−1 configurations.
This doubly exponential relationship is so strong that
even small problems quickly become computation-
ally infeasible. For example, with only four products,
there can only be 16 candidate flexibility configura-
tions with demand symmetry. However, with general
demand distributions the number of candidate con-
figurations increases to 32,768. Thus, this problem is
much more complex than with symmetric demand.
As before, our solution approach follows two key

steps. First, we describe the marginal value of a
flexible resource F in terms of only the shortage
regions. Second, we prove that the marginal value of
a resource is concave increasing in the level of flexi-
bility. However, given the asymmetry in the products,

1 For values of &<−1/3, the covariance matrix is no longer positive
semidefinite. Indeed, one cannot have four products with perfectly
negatively pairwise correlations.
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we need to modify our approach slightly. In particu-
lar, to characterize the marginal value of a resource,
we must know the product type that benefits from
additional capacity as well as the shortage region.
Thus, we refine the original N shortage regions into
N × N shortage regions, depending on the prod-
uct type benefitting from additional capacity in the
resources. We denote �i	 j for i	 j = 1	 
 
 
 	N as the
region where there is a shortage of product j because
of insufficient capacity of resource �i�. Indeed, in
a parallel network, an infinitesimal increase in the
capacity of resource �i� reduces the shortage of prod-
uct j by the same amount for demand realizations
that lie in �i	 j . In the following, we assume that the
products are labeled in decreasing order of shortage
penalty costs, i.e., p1 ≥ p2 ≥ · · · ≥ pN ≥ pN+1 ≡ 0.
Using the shortage regions, we can thus compute

the marginal value of a dedicated resource �i� as

V ��i��=
N∑
k=1

pk���i	k�=
N∑
k=1
�pk− pk+1��

( k⋃
j=1
�i	 j

)



The second equality follows by noting that we first
attribute the lowest shortage penalty pN to the demand
realizations that lie in the shortage region of at least
one product, i.e., the set

⋃N
j=1�i	 j . We then add the

incremental benefit �pN−1− pN � over the demand real-
izations that lie in the shortage regions of at least
one of the products �1	2	 
 
 
 	N − 1�. We continue in
this manner until all the shortage penalty costs are
accounted for. Extending this logic to a resource F , we
obtain its marginal value

V �F �=
N∑
k=1
�pk− pk+1��

( k⋃
j=1

⋃
i∈F
�i	 j

)



5.1.1. Shortage Regions in a Two-Product Setting.
For illustration we consider the case N = 2, which is
studied in Van Mieghem (1998). Figure 8 displays the
five mutually exclusive scenarios analogous to Fig-
ure 3 for a capacity portfolio K. The main differences
are that as p1 ≥ p2, the scenario �̃3 can be subdivided
into two further regions �̃3	 a, in which any increase in
capacity is allocated to product 2, and �̃3	 b, in which
the additional capacity is allocated to product 1. Thus,
we obtain our shortage regions �1	1 = �̃1∪ �̃3, �1	2 =
�̃3	 a,�2	1 = ��, and�2	2 = �̃2∪�̃3	 a∪�̃3	 b. Then, using
the above analysis, the marginal values for the three
resources equals

V ��1�� = p2���̃1∪�̃3	a∪�̃3	b�+�p1−p2����̃1∪�̃3	b�

= p1���̃1∪�̃3	b�+p2���̃3	a�	

V ��2�� = p2���̃2∪�̃3	a∪�̃3	b�	

V ��1	2�� = p2���̃1∪�̃2∪�̃3	a∪�̃3	b�

+�p1−p2����̃1∪�̃3	b�

= p1���̃1∪�̃3	b�+p2���̃2∪�̃3	a�


Figure 8 With Two Products Such That p1 >p2, the Demand Space Is
Partitioned Into Five Regions
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These expressions are identical to those in Van
Mieghem (1998).
The decreasing returns to flexibility result we

obtain in this asymmetric setting is slightly different
from before in the sense that it is product specific:
given a resource F , the marginal value of increasing
flexibility by adding a product r � F decreases in the
cardinality of F :

Proposition 5 (Decreasing Returns to Flexibility).
For any resource F ⊆ �1	 
 
 
 	N � in a capacity portfolio K
and any products q	 r � F , we have

V �F ∪ �q	 r��−V �F ∪ �q��≤ V �F ∪ �r��−V �F �
 (15)

Further, the inequality is strict if KF > 0.

Given the key result that the marginal value of flex-
ibility remains concave increasing, our main result
continues to hold but becomes product specific:

Proposition 6. With a general demand distribution,
the optimal flexibility portfolio is such that for any two
resources F and F ′ it invests in, if F ⊂ F ′, then F and F ′

must be at adjacent levels, i.e., �F ′� = �F � + 1.
This result leads to a significant reduction in the

number of configurations that needs to be consid-
ered. For example, in a four-product system, we only
need to consider 2,256 configurations out of a total of
32,768. Proposition 6 immediately leads to the follow-
ing result that demonstrates the optimality of tailored
pairing portfolios.

Corollary 2 (Optimality of Tailored Pairing).
1. If the optimal portfolio invests in a dedicated resource

for a product, then there will be no investment in level-
k > 2 resources to process this product.
2. Thus, if the optimal portfolio invests in dedicated

resources for all products, there will be no investment in
any level-k > 2 resource.
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Table 1 Optimal Solution to the Asymmetric Problem and the
Performance of the Heuristic Capacity Portfolio Obtained
by Assuming p1 = p2 = 1

CV (%) p2 Optimal cost Optimality gap of heuristic (%)

0.8 0.55 0
10 0.5 0.54 1

0.2 0.47 15
0.8 0.59 0

20 0.5 0.57 2
0.2 0.49 18
0.8 0.64 0

30 0.5 0.61 3
0.2 0.51 21

Notes. The unit shortage penalty cost for product 1 is set to p1 = 1.
The coefficient of variation (CV) of demand and the shortage penalty for
product 2, p2, are varied.

5.1.2. A Numerical Example with Two Products:
Benchmarking Symmetric Heuristics. The preceding
analysis illustrates the complexity involved in deal-
ing with asymmetric products. Using a two-product
example, we use the optimal solution to benchmark
the performance of a heuristic that computes the
capacity portfolio assuming the products are sym-
metric. We assume the two products have indepen-
dent and identically distributed, normally distributed
demand with unit mean. The cost of dedicated capac-
ity is c1 = 0
25, and that of the flexible resource is
c2 = 0
275 (using c2 = c1�1+ �� and �= 0
1). The unit
penalty cost for product 1 is p1 = 1, and we varied
the value of p2 and the coefficient of variation of
the demand of the two products. In each case, we
computed the optimal solution numerically and then
compared its cost to that obtained from the capacity
portfolio that is optimal for the symmetric problem
with p1 = p2 = 1. The results are displayed in Table 1.
Surprisingly, even when p2 is 0
5, this heuristic works
extremely well (with optimality gap less than 3%).
Only when p2 is extremely low compared to p1 does
the performance deteriorate. Less surprisingly, the
performance also deteriorates when the variability
increases.

5.2. Economies of Scale: Nonlinear Capacity
Sizing Cost Structure

Our theoretical analysis so far has assumed that the
investment cost CF �KF � for resource F is linear in its
capacity size KF . In practice, investment costs often
exhibit scale economies, meaning that one resource
with capacity 2KF is cheaper than two resources each
having capacity KF . Clearly, scale economies induce a
firm to invest in fewer but bigger resources. Mathe-
matically, scale economies imply that the investment
cost CF �KF � is concave in the capacity size KF . Unfor-
tunately, the capacity optimization problem then is no
longer guaranteed to be convex, and the first-order

conditions are no longer sufficient. In this section, we
generalize our analysis to a particular but important
form of scale economies where any positive invest-
ment incurs a fixed setup cost that may depend on the
resource’s level of flexibility, whereas marginal cost
of capacity remains constant. Specifically, there are N
positive setup costs sk > 0, and the investment cost
CF �KF � for resource F becomes

CF �KF �= s�F �1�KF >0�+ c�F �KF for KF ≥ 0

Including fixed costs results in a much harder com-

binatorial problem where we first must decide which
resources to invest in, and then solve our earlier opti-
mization problem (1) restricted to these resources.
Note that with fixed cost, the optimal capacity port-
folio for even a symmetric system is no longer guar-
anteed to be symmetric. Fortunately, as the marginal
cost of capacity remains linear once the setup cost has
been incurred, our main result continues to hold in
slightly modified form and allows us to reduce the
computational complexity:

Proposition 7. With general demand distribution and
setup costs, the optimal flexibility portfolio is such that for
any three resources F , F ′, and F ′′ it invests in, we cannot
have F ⊂ F ′ ⊂ F ′′.

Thus, the main result that only two levels of flexi-
bility should be invested in per product is robust to
the addition of setup costs, but these two levels need
no longer be adjacent. Nevertheless, this result still
leads to a significant reduction in the number of con-
figurations that needs to be considered. For example,
in a four-product system, we only need to consider
3,771 configurations out of a total of 32,768. Unfortu-
nately, our method does not allow a finer characteri-
zation of the optimal portfolio in this setting, and we
thus resort to two numerical studies to understand
the effect of setup costs.
First, we consider a three-product symmetric sys-

tem with common setup costs for all levels of flexi-
bility: s1 = s2 = s3 ≡ s. The demand for the products
is independent and normally distributed with unit
mean and standard deviation % = 0
3. We fix p = 1,
c1 = 0
25, and the flexibility premium � = 0
25 and
study the optimal portfolio as the setup cost s varies.
Figure 9 shows that the optimal configuration is tai-
lored chaining, which is equivalent to tailored pairing
for N = 3, without fixed costs (s = 0). As s increases,
the number of resources in the optimal portfolio
begins to decrease, as expected. For sufficiently large
setup costs, the scale economies are so high that the
optimal portfolio invests only in the fully flexible
resource. Notice that for s/c1 ∈ #0
05	0
13$, the opti-
mal configuration invests in level-1 and fully flex-
ible resources, demonstrating that adjacency is no
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Figure 9 The Optimal Capacity Portfolio as a Function of the Setup Cost
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longer optimal under economies of scale. Note that
because of economies of scale, one can also obtain
nonsymmetric configurations to be optimal as well.
For instance, when s/c1 ∈ #0
03	0
05$, the optimal con-
figuration invests in two out of the three level-2 flex-
ible resources.
Our second study investigates the relative perfor-

mance of three flexibility configurations that have
been studied in the literature under scale economies:
tailored pairing, tailored chaining, and the fully flex-
ible configuration. We consider symmetric systems
with N = 3	4	 and 5 products. All other parameters
are the same as in the first study. Figure 10 shows
the regions where each configuration dominates the
other two as a function of the number of products N
(on the horizontal axis) and the setup cost s (on the
vertical axis). For s = 0, tailored pairing is the opti-
mal configuration and dominates tailored chaining
and full flexibility. As the setup costs increase, tailored

Figure 10 Comparison of Tailored Pairing, Tailored Chaining, and One
Fully Flexible Resource with Setup Costs
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chaining becomes more cost effective than tailored
pairing because it uses N�N − 3�/2 fewer resources.
Finally, for large setup costs, full flexibility dominates.
Notice that the region where tailored chaining dom-
inates grows as the number of products N increases:
chaining saves on increasingly more resources over
pairing (explaining the downward sloping boundary
between the two) and full flexibility becomes increas-
ingly more expensive than level-2 flexibility (explain-
ing the upward sloping boundary). This provides
additional evidence of the attractiveness of tailored
chaining in practice.

5.3. Economies of Scope: Nonlinear Flexibility
Cost Structure

Our main results (Proposition 3 and Corollary 1)
require capacity costs to be affine in the level of flex-
ibility. Assuming that the cost of one unit of capacity
of a level-k resource is ck = c1#1+ ��k− 1�$ means that
the marginal cost of flexibility is constant and equal
to �. Remarkably, under this affine cost structure, the
results hold independent of the magnitude of �, as
long as it is positive. In this section, we investigate
the robustness of our result for nonaffine flexibility
cost structures. Clearly, when the capacity cost is con-
vex in the level of flexibility (ck > ck−1 + �c1), higher
levels of flexibility become even less attractive and
our main result holds. So let us investigate how the
optimal flexibility configuration changes when there
are economies of scope so that the marginal cost of
flexibility is concave increasing in the level of flexibility.
We established earlier that the marginal value of flex-

ibility is concave increasing in the level of flexibil-
ity k. If now the marginal cost is concave increasing as
well, the optimal solution depends on the relative cur-
vature of the two curves: with slightly concave cost,
our main result continues to hold. As economies of
scope increase, the curvature increases and the optimal
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Figure 11 Our Main Result Holds Even When the Cost Structure Is
Fairly Concave in Flexibility
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maximal concavity in flexibility costs for which tailored pairing continues to
be optimal.

levels of flexibility increase. Eventually, investment in
only the fully flexible resource becomes optimal.
Noting that for most reasonable parameters tailored

pairing is the optimal configuration, we investigate
how concave the flexibility cost structure can be for
tailored pairing to remain optimal. Let �k denote the
marginal cost to increase the level of flexibility of
one capacity unit from level-k − 1 to k. Then, ck =
c1#1 +

∑k
j=2 �j$. We perform a numerical study in a

four-product setting where the demand for each prod-
uct is normally distributed with mean one and vari-
ance 0
32 and is independent of the demand of other
products (&= 0). We set c1 = 0
25 and consider some
fixed values of �2 = 0
1	0
5	 and 0
75. At these cost
values, under the affine cost structure, tailored pair-
ing is the optimal portfolio. For each fixed value of
�2, we solve for the smallest marginal cost of flexi-
bility values �3 and �4 for which it remains optimal
not to invest in level-k > 2 flexibility. The results are
displayed in Figure 11. Notice that our main result
continues to hold for any concave flexibility cost
structure above the solid frontiers. This suggests our
results are robust to the cost structure choice to some
extent.

6. Other Applications: Substitution
and Queuing

In this section, we demonstrate how the methods
we have developed can be applied to characterize
optimal flexibility portfolios in other systems beyond
the models considered thus far. In §6.1, we add the
feature of product substitution to our model and char-
acterize the optimal portfolio, and in §6.2 we consider

the case of flexible make-to-order queuing systems
with dynamic customer arrivals and stochastic pro-
duction times.

6.1. Product Substitution
We demonstrate how our methodology can be used
to handle the case of product substitution. Consider
the case where products are vertically differentiated
with pi ≥ pi+1 for i= 1	2	 
 
 
 	N −1, and product i can
be substituted for i+ 1. We assume that each substi-
tution entails a cost of s, with s < pN . (This is similar
to the model in Bassok et al. (1999), but with a single
level of downward product substitution and flexible
capacity portfolio.) In this case, the firm’s optimiza-
tion problem is

� =min
K

{
ƐD��K	D�+

∑
F⊆�1	2	 


	N �

cF KF

}
	 (16)

where ��K	D� is the optimal contingent operating
profit:

��K	D�=min
x	y≥0

N∑
i=1

[
pi

(
Di −

∑
�F � i∈F �

xi	 F −
∑

�F � i∈S�F ��
yi	S�F �

)

+ s
∑

�F � i∈S�F ��
yi	S�F �

]
(17)

s.t.
∑

�F � i∈F �
xi	 F +

∑
�F � i∈S�F ��

yi	S�F � ≤Di	 (18)

∑
i∈F
xi	 F +

∑
i∈S�F �

yi	S�F � ≤KF 
 (19)

For mathematical convenience, we assume pN>p2−s,
so that any available capacity is first used to sat-
isfy direct customer demand, before any substitution
attempts to meet excess demand.
As before, we let �i	 j denote the shortage region

of resource i for product j . Considering resource �i�,
its marginal value consists of two components: (a) the
value from direct consumption, which equals VD��i��
= ∑N

j=1 pj���i	 j �, and (b) the value from substitu-
tion, which is realized only if there is no value from
direct consumption, and equals VS��i��=

∑N
j=1�pj − s� ·

���i+1	 j\
⋃N

j=1�i	 j �. (Note that substitution essentially
transforms a unit of resource �i� into that of resource
�i+ 1� with a cost of s.) Thus, we obtain the marginal
value of resource �i� is

V ��i�� = VD��i��+VS��i��

=
N∑
j=1
pj���i	 j �+

N∑
j=1
�pj − s��

(
�i+1	 j

∖ N⋃
j=1
�i	 j

)



Similarly, we obtain the marginal value of resource F ,

V �F � =
N∑
k=1
�pk− pk+1��

( k⋃
j=1

⋃
i∈F
�i	 j

)

+
N∑
j=1
�pj − s��

(⋃
i∈F

(
�i+1	 j

∖ N⋃
j=1
�i	 j

))
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Using this characterization of marginal value of the
various resources, we obtain that flexibility once again
has diminishing returns.

Proposition 8. For a system with downward product
substitution, flexibility continues to exhibit diminishing
returns; that is, for F ⊆ �1	2	 
 
 
 	N � and q	 r � F , we
have

V �F ∪ �q	 r��−V �F ∪ �q��≤ V �F ∪ �r��−V �F �


Furthermore, the inequality is strict if KF > 0.

Given that our key result that the marginal value
of flexibility remains concave increasing, our main
result continues to hold and remains identical to
Proposition 6.

Proposition 9. For asymmetric products with down-
ward substitution, if the optimal flexibility portfolio con-
tains two resources F and F ′ with F ⊂ F ′, then F and F ′

must be at adjacent levels, i.e., �F ′� = �F � + 1.
Thus, the set theoretic methodology extends to

this setting with substitution, and we obtain similar
results for the optimal flexibility portfolio; that is, if
the firm optimizes on its capacity portfolio, it should
invest only in adjacent flexible resources. The purpose
of this section was to demonstrate this robustness via
an illustration considering only “one step” downward
product substitution. However, the method described
can be extended to consider the case of general
substitutions.

6.2. Flexible Queuing Systems
Flexibility in services modeled as queuing systems
has received ample attention. Two connections are
worth making. First, consider traditional queuing sys-
tems with known arrival rates. The recent work by
Bassamboo et al. (2010a) (henceforth abbreviated as
BRV) proves that tailored pairing is the asymptot-
ically optimal flexibility configuration in symmetric
queuing systems with large arrival rates. A numer-
ical study suggests that a similar observation holds
in asymmetric settings. As we shall explain next,
the traditional assumptions that the mean interarrival
times are known is not innocuous. Statistical pool-
ing implies that the variance of the stationary queue
count process is of a smaller order, actually O�

√
��,

than the arrival rate. Consequently, BRV prove that
economic optimization leads to a portfolio invest-
ing mostly in dedicated capacity to serve the base
demand � and only in a small amount O�

√
�� of min-

imal level-2 flexibility to serve the variable demand.
This finding that a little flexibility is all you need is
consistent with our results for newsvendor systems,
where investing in dedicated resources leads to opti-
mality of tailored pairing portfolios. Yet, the optimal

configurations in newsvendor systems are richer and
go beyond tailored chaining and pairing.
Realizing that typical asymptotic queuing anal-

ysis relegates uncertainty to a second-order effect,
recent studies have investigated queuing systems
with arrival rate uncertainty, e.g., Harrison and Zeevi
(2005) and Bassamboo et al. (2006). When the first
moment is uncertain, variability is elevated to a first-
order phenomenon, and capacity decisions asymptot-
ically reduce to a newsvendor network problem of
the type studied here. To be precise, consider a queu-
ing system where N customer classes can be served
by resources that differ in their level of flexibility. As
before, there are 2N −1 different resources or pools of
servers. A server pool that can process customers of
classes F ⊆ �1	 
 
 
 	N � is referred to as pool F . Assum-
ing that all servers process work at a unit, determin-
istic rate, the capacity portfolio can be denoted by
K = �KF � F ⊆ �1	 
 
 
 	N ��, where KF is the number of
servers in pool F .
Customers of class i arrive according to a Pois-

son process with rate 0i, which is a random variable;
arrival rates can be correlated across customer classes.
Class i customers have exponentially distributed ser-
vices requirements with mean 1/!; that is, analogous
to our newsvendor model, customers have identical
service requirements. Customers of any given class
will abandon their queue if forced to wait too long
for the commencement of service. Specifically, each
class i customer is endowed with an exponentially
distributed “impatience” random variable with mean
1/1i, independent of the impatience random variables
characterizing other customers, and independent of
service times and arrival processes.
Similar to before, each level-k server costs ck per

unit time and each customer abandonment costs p.
The firm’s optimization problem is to select the opti-
mal capacity portfolio to minimize the average system
cost rate, which includes cost of capacity and cost of
customer abandonment.
With large arrival rates, the asymptotically opti-

mal portfolio selection entails solving a “higher level”
problem that ignores the lower level queuing. This
higher level problem is the fluid approximation to the
actual system and is exactly our newsvendor network
problem (1)–(4), where Di is replaced by the uncertain
arrival rate 0i. Bassamboo et al. (2010b) show that the
newsvendor network solution is asymptotically opti-
mal in a very strong sense: not only does its relative
error with the exactly optimal capacity portfolio tend
to zero as Ɛ0→�, its absolute error does not grow
with the arrival rate. This makes the newsvendor net-
work solution, for all practical purposes, an optimal
prescription to the queuing system if arrival rates are
uncertain.
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Given the equivalence between the asymptotic opti-
mization problem of queuing systems with uncertain
arrival rates and our newsvendor network problem,
Proposition 6 holds here as well. Thus, the asymp-
totically optimal flexibility portfolio will invest in
resources at adjacent levels. Furthermore, analogous
to Corollary 2, if the asymptotically optimal portfolio
invests in dedicated servers for each class, then there
will be no investment in servers of level-k > 2 flexi-
bility. Recall that in queuing systems without arrival
rate uncertainty, it is always asymptotically optimal
to invest a lot of capacity in dedicated servers, and
the corollary remains consistent with the asymptotic
optimality of tailored pairing in symmetric queuing
systems established in BRV.

7. Summary
This paper has studied the classic problem of capac-
ity and flexible technology selection with a newsven-
dor network model of resource portfolio investment.
We have presented an exact analytic methodology
and characterized the optimal flexibility configura-
tion for newsvendor networks with N products. This
simple abstract approach is sufficiently powerful to
prove that (i) flexibility exhibits decreasing returns,
and (ii) the optimal portfolio will invest in at most
two, adjacent levels of flexibility in symmetric sys-
tems. The analytic results were shown to extend to
asymmetric demand distributions, financial parame-
ters, scale economies with setup costs, and economies
of scope. The characterization of the optimal portfolio
allows a significant reduction in computational com-
plexity. Finally, we showed that our results can be
applied to product substitution scenarios and flexible
queuing systems with arrival rate uncertainty.

Appendix A. Supporting Results

A.1. Equivalence to the Transportation Problem
First, note that our optimization problem (2)–(4) is equiva-
lent to the following transportation problem that minimizes
the unmet demand per product ui:

��K	D�=min
x	u≥0

N∑
i=1
piui	 (A1)

∑
�F � i∈F �

xi	F +ui≥Di for all i=1	


	N	 (A2)

∑
i∈F
xi	F ≤KF for all F ⊆�1	


	N �
 (A3)

The equivalence follows by noting that for any optimal
solution of the above problem, the constraint (A2) is bind-
ing. Theorem 3.4.1 of Topkis (1998) states that the trans-
portation problem is supermodular in D. Hence, we directly
have the following corollary:

Corollary 3. For any K	D ∈�N
+ , ��K	D� is supermodular

in D.

A.2. The Dual Problem and Definition of �i	 j

We return to our original optimization problem (2)–(4)
and note that the first term p

∑N
i=1Di is constant, and

hence the objective can be re-expressed as maximizing
p
∑

F⊆�1	 


	N �
∑N

i=1 xi	 F . Given this equivalence, and denoting
�F and !i to be the dual variables associated with the capac-
ity constraint for resource F and demand constraint for
product i respectively, the dual problem can be written as

min
�	!≥0

{ ∑
F⊆�1	


	N �

KF �F +
N∑
i=1
Di!i

}
(A4)

s.t. �F +!i ≥ pi	 for F ⊆ �1	 
 
 
 	N � and i ∈ F 
 (A5)

Using the dual problem, we can define the shortage regions
as follows:
Definition 1. The shortage regions for dedicated

resource i are defined as

�i	 j �K� ≡ �D� ∃ an optimal solution to (A4)–(A5),
��	!� with ��i��K	D�= pj �	 for j = 1	2	 
 
 
 	N 


The following result characterizes the dual variables:

Lemma 1. There exist optimal dual variables ��	!� such
that
1. �F ∈ �pN+1	 pN 	 
 
 
 	 p1�, for all F ⊆ �1	 
 
 
 	N �;
2. for any F 	 F ′ ⊆ �1	 
 
 
 	N �, �F∪F ′ =max��F 	�F ′ �.
Proof of Lemma 1. Noting that the dual variables solve

a linear program, they must be extreme, or corner, points of
the constraint set:

3= {
��	!�� �	!≥ 0	�F +!i ≥ pi	

for F ⊆ �1	 
 
 
 	N � and i ∈ F }	
where we use the following definition of an extreme point:
Definition 2. y ∈ S is an extreme point of the convex set

S, if there do not exist feasible points y′, y′′ ∈ S with y′ �= y′′,
and 4 ∈ �0	1� such that y = 4y′ + �1−4�y′′.
The result then follows using properties 2 and 4 of the

following lemma.

Lemma 2. Any extreme point of the set 3 has the following
properties:

1. ��i� ≤ pi,
2. �F = supi∈F ��i�,
3. ��i�+!i = pi,
4. ��i� ∈ �pN+1	 pN 	 
 
 
 	 pi�.

Proof of Lemma 2. We prove the result by using a con-
tradiction argument. We first prove property 1. Suppose
there exist j such that ��j� > pj . Then set ��′	!′� and ��′′	!′′�
as follows: �′

F = �′′
F = �F for all F except F = j , �′

j = pj , and
�′′
j = 2��j� − pi and !′

i = !′′
i = !i for all i. Thus, we have

0
5��′	!′�+0
5��′′	!′′�. Furthermore, ��′	!′� and ��′′	!′′� lie
in the set 3. Thus, ��	!� is not an extreme point if ��i� > pi
for some i ∈ �1	 
 
 
 	N �.
For property 2, suppose we have some ��	!� ∈ 3 with

��j� ≤ pj for all j . Then, if there exists �G �= supi∈G ��i�, then
it must be the case that �G > supi∈G ��i�. Set ��

′	!′� and
��′′	!′′� as follows: �′

F = �′′
F = �F for all F except F = G,

�′
G = supi∈G ��i�, and �′′

G = 2�G−�′
G and !

′
i =!′′

i =!i for all i.
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Thus, we have 0
5��′	!′�+0
5��′′	!′′�. Furthermore, ��′	!′�
and ��′′	!′′� lie in the set 3. Thus, ��	!� is not an extreme
point �F > supi∈F ��i� for some i ∈ �1	 
 
 
 	N �.
For property 3, suppose we have ��	!� ∈3 with ��j� ≤ pj

for all j . Then, if there exists j , ��j� + !j �= pj , then it must
be the case that ��j� + !j ≥ pj . Set ��′	!′� and ��′′	!′′� as
follows: �′

F = �′′
F = �F for all F , !′

i = !′′
i = !i for all i �= j ,

!′
j = pj −��j�, and !′′

j = 2!j −!′
j . Thus, we have 0
5��

′	!′�+
0
5��′′	!′′�. Furthermore, ��′	!′� and ��′′	!′′� lie in the
set 3. Thus, ��	!� is not an extreme point ��i� +!i �= pi for
some i ∈ �1	 
 
 
 	N �.
Finally, for property 4, assume we have ��	!� ∈ 3

with properties 1, 2, and 3, but there exists ��j� �
�pN+1	 pN 	 
 
 
 	 pj �. Then, by property 3, we must have !j > 0.
Define sets

I = �i� ��i� = ��j��	

� = �F � �F = ��j��


Set � �=min�mink�I ���j�−��k��	mink=1	2	 


	N+1 ���j�− pk�	!j�.
Now, define two feasible points ��′	!′� and ��′′	!′′� as fol-
lows: �′

F = �F + �/2 for F ∈ � , and �′
F = �F for F � � , !′

i =
!i − �/2 for i ∈ I and !′

i = !i for i � I ; �′′
F = �F − �/2 for

F ∈ � , and �′′
F = �F for F � � , !′′

i = !i + �/2 for i ∈ I and
!′′
i = !i for i � I . Then, we have 0
5��′	!′�+ 0
5��′′	!′′� =

��	!�, and thus ��	!� cannot be an extreme point if �j �
�pN+1	 pN 	 
 
 
 	 pj � for all j = 1	2	 
 
 
 	N . � �

Lemma 1 and (7) directly lead to the following result:

Lemma 3. For any capacity portfolio K, the marginal value of
resource F , ƐD#�


F �K	D�$, equals

∑N
j=1 pj��

⋃
i∈F �i	 j �K��.

A.3. Symmetric Products
For a system with symmetric products, i.e., where the
demand for the products is independent and identically dis-
tributed, and with equal financial parameters pi = p for i=
1	2	 
 
 
 	N , the results derived thus far are simplified. In
this case, the dual problem (A4)–(A5) can be rewritten with
pi = p for all i. The corresponding shortage regions can now
be defined as

�i�K� ≡
{
D� ∃ an optimal solution to (A4)–(A5),

��	!� with ��i��K	D�= p
}



Appendix B. Proof of Results
Proof of Proposition 5. The result follows if we

demonstrate that

�

( k⋃
j=1

⋃
i∈F∪�q	 r�

�i	 j

)
−�

( k⋃
j=1

⋃
i∈F∪�q�

�i	 j

)

≤ �

( k⋃
j=1

⋃
i∈F∪�r�

�i	 j

)
−�

( k⋃
j=1

⋃
i∈F
�i	 j

)
	 (B1)

for k = 1	2	 
 
 
 	N 
 Defining �̃i =
⋃k
j=1�i	 j , (B1) is equiva-

lent to

�

( ⋃
i∈F∪�q	 r�

�̃i

)
−�

( ⋃
i∈F∪�q�

�̃i

)

≤ �

( ⋃
i∈F∪�r�

�̃i

)
−�

(⋃
i∈F
�̃i

)

 (B2)

We can write the right-hand side of (B2) as

�

( ⋃
i∈F∪�r�

�̃i

)
−�

(⋃
i∈F
�̃i

)
= �

(
�̃r ∪

(⋃
i∈F
�̃i

))
−�

(⋃
i∈F
�̃i

)

= ���̃r �−�

(
�̃r ∩

(⋃
i∈F
�̃i

))

 (B3)

Similarly, the left-hand side of (B2) can be written as

�

( ⋃
i∈F∪�q	 r�

�̃i

)
−�

( ⋃
i∈F∪�q�

�̃i

)

= �

(
�̃r ∪

( ⋃
i∈F∪�q�

�̃i

))
−�

(⋃
i∈F
�̃i

)

= ���̃r �−�

(
�̃r ∩

( ⋃
i∈F∪�q�

�̃i

))

 (B4)

Comparing (B3) and (B4) and using the fact that ���̃r ∩
�
⋃
i∈F �̃i��≤ ���̃r ∩ �

⋃
i∈F∪�q� �̃i��, (B2) follows.

If KF > 0, then we prove that

�

( N⋃
j=1
�r	 j ∩

(⋃
i∈F

N⋃
j=1
�i	 j

))

< �

( N⋃
j=1
�r	 j ∩

( ⋃
i∈F∪�q�

N⋃
j=1
�i	 j

))
	

and thus (B2) holds with strict inequality for k=N . To see
why this inequality holds, pick any i ∈ F and a demand
realization along with a corresponding optimal allocation x

such that resource F has some excess capacity left after all
allocations, resources �q� and �r� are completely depleted
after allocations, whereas there is shortfall in products q
and r , i.e., KF −

∑
j∈F xj	 F > 0	K�q�− xq	 �q� = 0	K�r�− xr	 �r�=0,

Dq >
∑

F ′⊆�1	 


	N � xq	 F ′ and Dr >
∑

F ′⊆�1	 


	N � xr	 F ′ . Thus, this
demand realization lies in �q	q and �r	r , but not in⋃
i∈F

⋃N
j=1�i	 j . Then, using the fact that the demand distri-

bution has a positive density on �N
+ , we obtain the existence

of a set A of demand realizations of positive measure (along
with an optimal allocation) on which resource F still has
excess capacity left after allocations, resource �j� remains
exhausted, and demand of product j continues to have a
shortfall. Clearly, A⊆�q	q ∩�r	r and A∩ �⋃i∈F

⋃N
j=1�i	 j � is

empty, and thus

�

( N⋃
j=1
�r	 j ∩

(⋃
i∈F

N⋃
j=1
�i	 j

))

< �

( N⋃
j=1
�r	 j ∩

( ⋃
i∈F∪�q�

N⋃
j=1
�i	 j

))

 �

Proof of Proposition 7. Consider any portfolio such
that there are resources F ⊂ F ′ ⊂ F ′′ with KF 	KF ′	KF ′′ > 0. We
shall show that such a portfolio cannot be optimal. The opti-
mality conditions requires that the optimal portfolio must
satisfy the following KKT conditions:

V �F �= c1#1+ ��F � − 1��$	 V �F ′�= c1#1+ ��F ′� − 1��$	
V �F ′′�= c1#1+ ��F ′′� − 1��$
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Applying Proposition 5 (which applies to this setting with-
out change), there are diminishing returns to flexibility, and
using KF > 0 we obtain

V �F ′′�−V �F ′�
�F ′′� − �F ′� <

V �F ′�−V �F �

�F ′� − �F � 


This leads to a contradiction and the result follows. �

Proof of Proposition 8. Consider any capacity portfo-
lio K. We can rewrite the marginal value of an increase in
the capacity of resource �i� as

V ��i�� =
N∑
k=1
�pk − pk+1��

( k⋃
j=1
�i	 j

)

+
N∑
k=1
�sk − sk+1��

( k⋃
j=1
�i+1	 j

∖ N⋃
j=1
�i	 j

)

=
N∑
k=1
�sk − sk+1��

( k⋃
j=1
�i	 j ∪�i+1	 j

)
+ s

N∑
k=1

�

( k⋃
j=1
�i	 j

)
	

where pN+1 = 0, si = pi for i = 1	2	 
 
 
 	N , and sN+1 = s.
Similarly, the marginal value of resource F , where F ⊆
�1	2	 
 
 
 	N �, can be written as

V �F � =
N∑
k=1
�sk − sk+1��

( k⋃
j=1

(⋃
i∈F
��i	 j ∪�i+1	 j �

))

+ s
N∑
k=1

�

( k⋃
j=1

⋃
i∈F
�i	 j

)
	

where �N+1	 j =6 is the null set for j = 1	 
 
 
 	N . The rest of
the proof follows analogous to that of Proposition 5. �
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